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For a non-acute planar straight-line graph, Ruppert’s algorithm produces a
conforming Delaunay triangulation composed of triangles containing no angles
less than α. Ruppert proved the algorithm terminates for all α / 20.7◦ [5], but
this constraint has been seen to be overly conservative in practice. Ruppert
observed that the minimum angle reaches 30◦ during typical runs of the algo-
rithm. Further experimentation by Shewchuk [6] suggested that even higher
values are admissible: “In practice, the algorithm generally halts with an angle
constraint of 33.8◦, but often fails [at] 33.9◦.”

The constraint on α can be improved to about 26.5◦ by splitting adja-
cent segments at equal length [3] or modifying the algorithm [1, 7]. Certain
modifications of the vertex insertion procedure have also been demonstrated
that this constraint can be improved to possibly 40◦ or more [2]. Many other
variants of Ruppert’s algorithm have been designed to relax or eliminate the
requirement that the input be non-acute; see [4] for a comprehensive inves-
tigation. However, no improvement has been proved for the minimum angle
constraint for Ruppert’s original algorithm.

For each variant of the algorithm, theoretical requirement falls short of
the observed behavior. We aim to study this gap for the original algorithm
with the hope that a precise analysis of its behavior will lead to a better
understanding of the subsequent improvements. There are three parts of this
investigation. First, we give a counterexample demonstrating that Ruppert’s
algorithm can fail to terminate for α ≈ 30.7◦. Second, several experiments of
Ruppert’s algorithm using random inputs are considered. Finally, we prove
that Ruppert’s algorithm terminates for all α / 22.2◦.

Ruppert’s Algorithm

A brief description of Ruppert’s algorithm, the prototypical Delaunay refine-
ment algorithm, is given in Table 1. Vertices inserted by Operations 1 and 2
are called midpoints and circumcenters, respectively. The insertion radius of
a vertex q, denoted rq, is the distance from the vertex to its nearest neighbor
immediately after its insertion into the Delaunay triangulation.
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Table 1. Ruppert’s algorithm repeats Operations 1 and 2 until no encroached seg-
ments or Delaunay triangles with small angles exist.

Input A non-acute planar straight-line graph (PSLG), C = (P ,S), con-
sisting of input vertices P and input segments S .

Parameter A minimum output angle threshold α.

Preprocess Compute the Delaunay triangulation of P .

Operation 1 Insert the midpoint of a segment with non-empty diametral ball.

Operation 2 Insert the circumcenter of a Delaunay triangle with angle smaller
than α, unless this point lies in the diametral ball of a segment.
Otherwise, perform Operation 1 on the segment.

Output Set of vertices P
′ with Delaunay triangulation T

′ which conforms
to C and contains no triangles with angle smaller than α.

Each vertex q is associated with a parent vertex p(q). The parent of a
midpoint q is the vertex encroaching the segment causing q to be inserted.
The parent of a circumcenter q is the vertex which is the newer endpoint
of the shortest edge of the poor-quality triangle with circumcenter q. Define
p2(q) := p(p(q)) and inductively pk(q) := p(pk−1(q)).

The local feature size of a point x, denoted lfs(x), is the radius of the
smallest closed ball centered at x which intersects two disjoint features (seg-
ments or vertices) in the input. Local feature size is a 1-Lipschitz function;
i.e., lfs(x) ≤ |x − y| + lfs(y). Define

α∗ := sup {α | there exists a constant Cα such that lfs(q) ≤ Cαrq} .

Ruppert’s original analysis is summarized in the following theorem.

Theorem 1 (Ruppert, [5]). α∗ ≥ arcsin 2−3/2 ≈ 20.7◦.

Counterexample

21/4

2
≈ 30.7◦

Fig. 1.

Consider a non-acute input containing four adja-
cent segments of lengths 2, 23/4, 21/2 and 21/4 as
in Fig. 1. The endpoints of the longest and shortest
segments form a Delaunay triangle with smallest
angle arctan 2−3/4. The circumcenter of this trian-
gle encroaches upon the longer segment causing the
midpoint of the longest segment to be inserted. Now
the adjacent segments have lengths 1, 23/4, 21/2 and
21/4 and the ratio of the shortest and longest seg-
ment is still 23/4. Again this gives a poor quality
triangle and the midpoint of the longest segment is
inserted. This cycle repeats indefinitely. The result
is an upper bound on α∗.

Theorem 2. α∗ ≤ arctan 2−3/4 ≈ 30.7◦.
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Experiments

Table 2.

(a)

Minimum Success
Angle Rate
33.3 100.0%
33.4 98.6%
33.5 0.0%

(b)

Minimum Success
Angle Rate
31.4 100.0%
32.0 99.6%
32.6 98.6%

Next we consider two experiments
which investigate the claim that
Ruppert’s algorithm terminates in
practice for α ≥ 33◦. First, Rup-
pert’s algorithm is run 500 times
on inputs containing 10, 000 ran-
domly generated vertices. The suc-
cess rate for several different values
of α is given in Table 2(a): the al-
gorithm always succeeded for α = 33.3◦ and always failed for α = 33.5◦. Fig. 2
contains a histogram of the maximum ratio of the local feature size to output
mesh size (which is closely related to the constant in Theorem 1) of each run
for several alpha values. The second experiment is inspired by the example
in Fig. 1. Input are created consisting of four adjacent segments of random
length and 100 additional random vertices. After testing 500 example inputs,
Table 2(b) contains the success rate of the algorithm.
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Fig. 2. Histogram of the ratio of output mesh size to local feature size for 500 runs
of Ruppert’s algorithm with 10,000 randomly placed input vertices.

Theorem

By carefully analyzing the example in Fig. 1, we strengthen Theorem 1.

Theorem 3. α∗ ' 22.2◦.

Proof. If q is a midpoint, pk+1(q) is either a midpoint or input vertex, and
{pi(q)}k

i=1 are all circumcenters, say that q results from a length-k circum-

center sequence. The circumcenter sequence will be said to begin at pk+1(q)
and end at q; see Fig. 3(a). Ruppert’s algorithm is analyzed by considering
circumcenter sequences of different lengths. Let q be a midpoint which is in-
serted at the end of a length-k circumcenter sequence, and let s1 and s2 be
the input segments containing pk+1(q) and q, respectively; if pk+1(q) is an
input point, treat it as a disjoint segment from s2 in the following analysis.
Length-0 Circumcenter Sequences. The non-acute input requirement is
designed to ensure that for a length-0 circumcenter sequence s1∩s2 = ∅. Then
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(b) p(q) must lie in the shaded region.

Fig. 3. Diagrams for the proof of Theorem 3
.

lfs(q) ≤ |q− p(q)| + rq ≤ 2rq. (1)

Length-2+ Circumcenter Sequences. We consider an inductive estimate
associated with a length-2+ circumcenter sequence.

lfs(q) ≤ |q − p(q)| + lfs(p(q)) ≤ rq + |p(q) − p2(q)| + lfs(p2(q))

≤ rq + rp(q) + rp2(q) + lfs(p3(q)) ≤
(

C̄ + Cα

√
2(2 sinα)2

)

rq. (2)

Length-1 Circumcenter Sequences. If s1 ∩ s2 = ∅, then

lfs(q) ≤ |q − p2(q)| ≤ |q − p(q)| + |p(q) − p2(q)| ≤ 2rp(q) ≤ 2
√

2rq. (3)

Miller, Pav, and Walkington studied circumcenter sequences beginning and
ending with vertices on the same input segment [3]. They showed that any
such circumcenter sequence has length at least three. Thus s1 6= s2.

Next suppose s1 and s2 are adjacent input segments. Let q0 denote the in-
put vertex shared by s1 and s2. Let s′2 ⊂ s2 be the segment which is split when
inserting q. First we claim that q0 ∈ s′2; i.e., s′2 is at the end of s2. If q0 /∈ s′2,
then dist(q0, s

′
2) ≥ |s′2| since all midpoints are inserted by splitting segments in

half. Moreover, the non-acute input assumption ensures that q0 is the nearest
point on s1 to the diametral ball of s′2, B(s′2): dist(B(s′2), s1) ≥ |s′2|. However
p(q) lies in the diametral ball of s′2, so rp(q) ≤ 1√

2
|s′2|. Since p2(q) ∈ s1 and

p(q) ∈ B(s′2),
1√
2
≥ rp(q) = |p(q) − p2(q)| ≥ dist(B(s′2), s1) ≥ |s′2|. This

contradiction means q0 ∈ s′2.
So q0 ∈ s′2 as in Fig. 3(b). Let s′1 be the subsegment of s1 containing q0.

First suppose that p2(q) /∈ s′1. Let q∗ be the endpoint of s′1 opposite q0. Then,

lfs(q) ≤ |q − q∗| + lfs(q∗) ≤ rq + rq∗ + Cαrq∗ ≤ rq + (1 + Cα)
1

2
rp2(q)

= rq + (1 + Cα)
1

2
|p2(q) − p(q)| ≤

(

1 +
1√
2

+
Cα√

2

)

rq. (4)

Next suppose that p2(q) ∈ s′1 as in Fig. 3(b). Since p(q) is the circum-
center of a triangle with vertex p2(q) ∈ s1 and p(q) encroaches s′2,
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|p(q) − p2(q)| ≤ min (|p(q) − q0|, |p(q) − q2|) and |p(q) − q| ≤ 1√
2
|s′2|.

The set of points S satisfying these inequalities is shaded in Fig. 3(b). Let

f(θ, |s′1|, |s′2|) = max
p(q)∗∈S

|p2(q) − p(q)|, and d∗ = min
f(θ,|s′

1
|,|s′

2
|)

|s′1|
< 1

2 sin α

rq
rp2(q)

,

where we emphasize that f only depends on the lengths and angle between s1

and s1. If
f(θ,|s′

1|,|s′
2|)

|s′
1|

< 1
2 sin α , then no suitable p(q) exists as the circumcenter

of an appropriate poor-quality triangle and with parent p2(q).
If d∗ ≥ 2−1/4 at most three consecutive length-1 circumcenter sequences

can occur: there are at most four adjacent segments at a given input vertex (by
the non-acute input requirement) and the fourth insertion radius is not small
enough to re-split a segment. Considering the worst case (three consecutive
length-1 circumcenter sequences preceded by two circumcenters) and applying
the inductive hypothesis,

lfs(q) ≤ C̄rq + Cαrp9(q) ≤
[

C̄ + Cα(d∗)−3
√

2 (2 sinα)2
]

rq (5)

where C̄ is another constant independent of α.
Based on the definition, d∗ can be computed for a specified small angle

threshold α. (This computation has been omitted to satisfy page restrictions.)

We find that for α / 22.2◦, d∗ ≥ 2−1/4 and (d∗)−3
√

2 (2 sinα)2 < 1, allowing

Cα to be selected large enough such that C̄ + Cα(d∗)−3
√

2 (2 sinα)
2

< Cα.
This constant is also sufficient in the other cases (1), (2), (3) and (4) which
completes the proof. �
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